Curso Google Cloud Data Engineer - Professional
Curso Google Cloud Data Engineer - Professional
Clases Virtuales en Vivo
Via Zoom con profesor en línea para resolver todas tus dudas y consultas.
- 27 horas académicas
- Tipo de Cambio S/. 3.70
- Nivel Avanzado
Share
Beneficios del Curso
Nuestros alumnos certificados ahora trabajan en las compañías más exitosas
Temario del Curso
Tema 1: Creación de sistemas de análisis de flujos de datos en Google Cloud
- Laboratorio práctico de Publicación de datos en streaming en PubSub
- Laboratorio práctico de Canalización de datos en streaming
- Laboratorio práctico de Streaming de análisis y cuadros de mando
- Laboratorio práctico de Canalización de datos en Bigtable
Tema 2: Fundamentos del Procesamiento de datos sin servidor con Dataflow y Creación de canalizaciones de Data Pipelines en Google Cloud
- Laboratorio práctico de Ejecución de trabajos Apache Spark en Cloud Dataproc
- Laboratorio práctico de Canalización sencilla de flujos de datos usando Python
- Laboratorio práctico de MapReduce en Beam usando Python
- Laboratorio práctico de Análisis de datos sin servidor con Dataflow usando Side Inputs con Python
- Laboratorio práctico de Configuración de IAM y redes para sus trabajos de flujo de datos
Tema 3: Desarrollo de canalizaciones de Procesamiento de datos sin servidor con Dataflow
- Laboratorio práctico de Escritura de un ETL Pipeline usando Apache Beam y Cloud Dataflow usando Python
- Laboratorio práctico de Pipelines de análisis por lotes con Cloud Dataflow usando Python
- Laboratorio práctico de Uso de Dataflow para análisis en flujo usando Python
- Laboratorio práctico de Uso de Dataflow SQL para análisis por lotes usando Python
- Laboratorio práctico de Uso de Dataflow SQL para análisis de flujo de datos usando Python
Tema 4: Manejo de operaciones de Procesamiento de datos sin servidor con Dataflow
- Laboratorio práctico de Supervisión, registro e informes de errores para trabajos de Dataflow
- Laboratorio práctico de Pruebas con Apache Beam usando Python
- Laboratorio práctico de CI/CD con Dataflow
- Laboratorio práctico de Plantillas personalizadas de Dataflow Flex usando Python
Tema 5: Modernización de lagos de datos y almacenes de datos con Google Cloud
- Laboratorio práctico de Uso de BigQuery para realizar análisis
Laboratorio práctico de Carga de datos en Google Cloud SQL 2.5 - Laboratorio práctico de Trabajo con datos JSON y Array en BigQuery 2.5
- Laboratorio práctico de Tablas Particionadas en Google BigQuery
Tema 6: Creación de un almacén de datos con BigQuery
- Laboratorio práctico de Creación de un almacén de datos mediante Joins y Unions
- Laboratorio práctico de Creación de Tablas Particionadas por Fecha en BigQuery
- Laboratorio práctico de Trabajo con JSON, Arrays y Structs en BigQuery
Tema 7: Construir un Data Mesh con Dataplex
- Laboratorio práctico de Etiquetado de activos en Dataplex
- Laboratorio práctico de Implementación de la seguridad en Dataplex
- Laboratorio práctico de Evaluación de la calidad de los datos con Dataplex
Tema 8: Simulacro del examen oficial de certificación Google Cloud Data Engineer
Revisaremos a detalle la guía oficial en español del examen de certificación Google Cloud Data Engineer así como las 10 preguntas de ejemplo para conocer los tips, consejos y estrategias de resolución. Además se realizará el Simulador Oficial del examen de Google Cloud que consta de 20 preguntas, donde los alumnos podrán validar su conocimientos aprendidos y preparación impartida en clase.
Inicio: Sábado 2 de noviembre
Frecuencia: Sábados
(9 clases de 3 horas cada una)
-
Sab
(8 am a 11 am)
+
(1 pm a 4 pm) -
Sab
(9 am a 12 pm)
+
(2 pm a 5 pm) -
Sab
(10 am a 1 pm)
+
(3 pm a 6 pm) -
Sab
(11 am a 2 pm)
+
(4 pm a 7 pm) -
Sab
(4 pm a 7 pm)
+
(9 pm a 12 am)
Nuestro Compromiso y Garantía
La gran mayoría de nuestros alumnos aprueban sus exámenes de certificación en el primer intento. Sin embargo, si no te fue bien en el examen vuelves a llevar el curso totalmente gratis. ¡Lo volvemos a intentar hasta que lo logres!
Ing. José Mejía
Experto certificado en Google Cloud con más de 5 años de experiencia en análisis de datos, soluciones multi-nube y gestión de proyectos, profesional. Actualmente se desempeña como Ingeniero de Datos y Machine Learning en Ferreycorp S.A. Tiene las siguientes certificaciones internacionales: Google Cloud Machine Learning Engineer, Google Cloud Engineer, Google Cloud Digital Leader.