Curso Google Cloud Engineer + Cloud Data Engineer (Doble Certificación)
Curso Google Cloud Engineer + Cloud Data Engineer (Doble Certificación)
Clases Virtuales en Vivo
Via Zoom con profesor en línea para resolver todas tus dudas y consultas.
- 51 horas académicas
- Tipo de Cambio S/. 3.70
- Nivel Avanzado
Share
Beneficios del Curso
Nuestros alumnos certificados ahora trabajan en las compañías más exitosas
Temario del Curso
Tema 1: Fundamentos de la Infraestructura de Google Cloud
- Laboratorio práctico para previsualizar la infraestructura
- Laboratorio práctico para conocer los componentesl de una VPC
- Laboratorio práctico para Implementación de Google Access Privado y Cloud NAT
- Laboratorio práctico para trabajar con Máquinas Virtuales
Tema 2: Servicios Principales de la Infraestructura de Google Cloud
- Laboratorio práctico de Exploración de IAM
- Laboratorio práctico de Cloud Storage
- Laboratorio práctico de Implementación de SQL en la nube
- Laboratorio práctico de Análisis de datos de facturación con BigQuery
Tema 3: Escalamiento, elasticidad y automatización de la Infraestructura de Google Cloud
- Laboratorio práctico de Configuración de Google Cloud HA VPN
- Laboratorio práctico de Configuración de un balanceador de carga HTTP con autoescalado
- Laboratorio práctico de Configuración de un Balanceador de Carga Interno
Tema 4: Fundamentos de Google Kubernetes Engine
- Laboratorio práctico con Cloud Build
- Laboratorio práctico de Implementación de clústeres de piloto automático de GKE
- Laboratorio práctico de Despliegue de GKE Autopilot Clusters usando Cloud Shell
Tema 5: Monitoreo y trazabilidad en Google Cloud
- Laboratorio práctico de Monitorización y Dashboarding de Múltiples Proyectos
- Laboratorio práctico de Alertas en Google Cloud
- Laboratorio práctico de Monitorización de Servicios
- Laboratorio práctico de Log Analytics en Google Cloud
- Laboratorio práctico de Registros de Auditoría en la Nube
Tema 6: Observabilidad en Google Cloud
- Laboratorio práctico de Monitoreo de un motor de computo mediante Ops Agent
- Laboratorio práctico para Analizar el tráfico de red con VPC Flow Logs
- Laboratorio práctico para Ver la latencia de aplicaciones con Cloud Trace
Tema 7: Fundamentos de Terraform en Google Cloud
- Laboratorio práctico de Infraestructura como código con Terraform
- Laboratorio práctico de Creación de Dependencias de Recursos con Terraform
- Laboratorio práctico de Automatización del Despliegue de Infraestructura con Terraform
- Laboratorio práctico de Creación de un Backend Remoto
Tema 8: Creación de sistemas de análisis de flujos de datos en Google Cloud
- Laboratorio práctico de Publicación de datos en streaming en PubSub
- Laboratorio práctico de Canalización de datos en streaming
- Laboratorio práctico de Streaming de análisis y cuadros de mando
- Laboratorio práctico de Canalización de datos en Bigtable
Tema 9: Fundamentos del Procesamiento de datos sin servidor con Dataflow y Creación de canalizaciones de Data Pipelines en Google Cloud
- Laboratorio práctico de Ejecución de trabajos Apache Spark en Cloud Dataproc
- Laboratorio práctico de Canalización sencilla de flujos de datos usando Python
- Laboratorio práctico de MapReduce en Beam usando Python
- Laboratorio práctico de Análisis de datos sin servidor con Dataflow usando Side Inputs con Python
- Laboratorio práctico de Configuración de IAM y redes para sus trabajos de flujo de datos
Tema 10: Desarrollo de canalizaciones de Procesamiento de datos sin servidor con Dataflow
- Laboratorio práctico de Escritura de un ETL Pipeline usando Apache Beam y Cloud Dataflow usando Python
- Laboratorio práctico de Pipelines de análisis por lotes con Cloud Dataflow usando Python
- Laboratorio práctico de Uso de Dataflow para análisis en flujo usando Python
- Laboratorio práctico de Uso de Dataflow SQL para análisis por lotes usando Python
- Laboratorio práctico de Uso de Dataflow SQL para análisis de flujo de datos usando Python
Tema 11: Manejo de operaciones de Procesamiento de datos sin servidor con Dataflow
- Laboratorio práctico de Supervisión, registro e informes de errores para trabajos de Dataflow
- Laboratorio práctico de Pruebas con Apache Beam usando Python
- Laboratorio práctico de CI/CD con Dataflow
- Laboratorio práctico de Plantillas personalizadas de Dataflow Flex usando Python
Tema 12: Modernización de lagos de datos y almacenes de datos con Google Cloud
- Laboratorio práctico de Uso de BigQuery para realizar análisis
Laboratorio práctico de Carga de datos en Google Cloud SQL 2.5 - Laboratorio práctico de Trabajo con datos JSON y Array en BigQuery 2.5
- Laboratorio práctico de Tablas Particionadas en Google BigQuery
Tema 13: Creación de un almacén de datos con BigQuery
- Laboratorio práctico de Creación de un almacén de datos mediante Joins y Unions
- Laboratorio práctico de Creación de Tablas Particionadas por Fecha en BigQuery
- Laboratorio práctico de Trabajo con JSON, Arrays y Structs en BigQuery
Tema 14: Construir un Data Mesh con Dataplex
- Laboratorio práctico de Etiquetado de activos en Dataplex
- Laboratorio práctico de Implementación de la seguridad en Dataplex
- Laboratorio práctico de Evaluación de la calidad de los datos con Dataplex
Tema 15: Simulacro del examen oficial de certificación Google Cloud Engineer
Revisaremos a detalle la guía oficial en español del examen de certificación Google Cloud Engineer así como las 10 preguntas de ejemplo para conocer los tips, consejos y estrategias de resolución. Además se realizará el Simulador Oficial del examen de Google cloud que consta de 20 preguntas, donde los alumnos podrán validar su conocimientos aprendidos y preparación impartida en clase.
Tema 16: Simulacro del examen oficial de certificación Google Cloud Data Engineer
Revisaremos a detalle la guía oficial en español del examen de certificación Google Cloud Data Engineer así como las 10 preguntas de ejemplo para conocer los tips, consejos y estrategias de resolución. Además se realizará el Simulador Oficial del examen de Google Cloud que consta de 20 preguntas, donde los alumnos podrán validar su conocimientos aprendidos y preparación impartida en clase.
Inicio: Sábado 2 de noviembre
Frecuencia: Sábados
(17 clases de 3 horas cada una)
-
Sab
(8 am a 11 am)
+
(1 pm a 4 pm) -
Sab
(9 am a 12 pm)
+
(2 pm a 5 pm) -
Sab
(10 am a 1 pm)
+
(3 pm a 6 pm) -
Sab
(11 am a 2 pm)
+
(4 pm a 7 pm) -
Sab
(4 pm a 7 pm)
+
(9 pm a 12 am)
Nuestro Compromiso y Garantía
La gran mayoría de nuestros alumnos aprueban sus exámenes de certificación en el primer intento. Sin embargo, si no te fue bien en el examen vuelves a llevar el curso totalmente gratis. ¡Lo volvemos a intentar hasta que lo logres!
Ing. José Mejía
Experto certificado en Google Cloud con más de 5 años de experiencia en análisis de datos, soluciones multi-nube y gestión de proyectos, profesional. Actualmente se desempeña como Ingeniero de Datos y Machine Learning en Ferreycorp S.A. Tiene las siguientes certificaciones internacionales: Google Cloud Machine Learning Engineer, Google Cloud Engineer, Google Cloud Digital Leader.